
                                                  
    NeOn-project.org 

 

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D3.1.2 Context Representation Formalism

Deliverable Co-ordinator: Guilin Qi

Deliverable Co-ordinating Institution: Universität Karlsruhe (TH) (UKARL)

Other Authors: Peter Haase (UKARL), with contributions from Sofia Pinto
(TU Lisbon)

In this deliverable we discuss formalisms for context representation in NeOn project. We first
recall the general definition of context given in NeOn deliverable D3.1.1. Then we instantiate the
general definition by describing provenance and argumentation. After that, we consider how to
represent context in OWL ontologies. Finally, some approaches are given to illustrate how to
obtain context information automatically from an incoherent ontology.

Document Identifier: NEON/2007/D3.1.2/v1.0 Date due: March 30, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 28, 2007
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2007 c© Copyright lies with the respective authors and their institutions.



Page 2 of 34 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European
Communities, grant number IST-2005-027595. The following partners are involved in the project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA D-76128 Karlsruhe
United Kingdom Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Richard Benjamins Contact person: Marko Grobelnik
E-mail adress: rbenjamins@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier S14DP Sheffield
France United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Asociación Española de Comercio Electrónico
Amalienbadstr. 36 (AECE)
(Raumfabrik 29) C/lcalde Barnils, Avenida Diagonal 437
76227 Karlsruhe 08036 Barcelona
Germany Spain
Contact person: Jürgen Angele Contact person: Jose Luis Zimmerman
E-mail address: angele@ontoprise.de E-mail address: jlzimmerman@fecemd.org
Food and Agriculture Organization of the United Atos Origin S.A. (ATOS)
Nations (FAO) Calle de Albarracín, 25
Viale delle Terme di Caracalla 28037 Madrid
00100 Rome, Italy Spain
Contact person: Marta Iglesias Contact person: Tomás Pariente Lobo
E-mail address: marta.iglesias@fao.org E-mail address: tomas.parientelobo@atosorigin.com



D3.1.2 Context Representation Formalism Page 3 of 34

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed writing parts of this document:

• University of Karlsruhe

2006–2007 c© Copyright lies with the respective authors and their institutions.



Page 4 of 34 NeOn Integrated Project EU-IST-027595

Executive Summary

In D3.1.1 we surveyed the state-of-the-art on dealing with context and identified approaches for representing
and reasoning with context which may be relevant for NeOn. In terms of the usages of context, we found
that supporting viewpoints and perspectives and dealing with inconsistent, uncertain and vague information,
will play a paramount role in NeOn. Considering these findings, in this deliverable we define the NeOn
formalisms for context representation. Based on a generic and abstract definition of context, we specifically
describe two specific forms of context: Provenance and Arguments.

Provenance includes context information about when and how ontology elements where introduced, from
which information sources they have been obtained as well as information about the relevance of and confi-
dence in ontology elements. This context information can then be exploited in dealing with various forms of
imperfection, e.g. by interpreting the confidence values in a setting of probabilistic logics. Provenance infor-
mation can easily be generated in approaches of automated ontology construction, e.g. ontology learning.
We therefore specifically describe a model for provenance in ontology learning.

Arguments are another important form of context that captures reasons why particular elements in the on-
tology have been introduced in a particular way, but also decision procedures for the case of disagreements
about the ontology. Such context information can again be exploited in resolving conflicts within an ontology,
or selecting particular subsets of an ontology for a given context.

Another important aspect we need to address is how the context can be syntactically represented to be able
to relate an ontology with its context. We therefore propose so called groundings of the context representation
within OWL that allow us to specify the context itself in the form of an OWL ontology.

Finally, we describe some approaches for measuring incoherence in OWL ontologies that allows us to au-
tomatically obtain context information. This context – in the form of ranking information – can be exploited
in dealing with imperfect information, where there are usually several alternative solutions available and we
need to explore ranking information to select the best solution.
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Chapter 1

Introduction

1.1 NeOn Big Picture

Real life ontologies and corresponding data are produced by individuals or groups in certain settings for
specific purposes. Because of this, they can almost never be considered as something absolute in their
semantics and are often inconsistent with ontologies created by other parties under other circumstances.
In order to fully utilize networked ontologies, those disagreements must be identified prior to using them for
reasoning. Each ontology can be viewed as valid (or appropriate) in a certain context. The context can be
seen as a set of all circumstances, properties and facts within which the ontology has the desired semantics.
From the theoretical side, we could say that whenever the contextual information is necessary, the target
ontology cannot have fully defined static semantics because it depends on some external information which
we call context. We could call such ontologies parametric ontologies because their semantics depends on the
value of contextual parameters. It is the goal of the work performed in WP3 to develop appropriate techniques
for dealing with context. As shown in Figure 1.1, this work belongs to the central part of the research and
development WPs in NeOn. One of the key points of this workpackage is to model and provide a formalization
of the context. This model will support both a proper representation of the information particular to the context
and its formalization that allows reasoning with the modeled context.

1.2 Context Representation in NeOn

The notion of context has a very long history within several research communities, leading to vast stud-
ies about how to define a context, how to take into account information coming from the context, how to
contextualize or de-contextualize knowledge and information, etc.

In D3.1.1 we surveyed the state-of-the-art on dealing with context. We identified several possible usages
of context for ontologies and gave an overview of some present approaches for representing and reasoning
with context which may be relevant for NeOn. We provided an abstract and generic mathematical definition of
context, based on which we compared the different approaches. In terms of the usages of context, we found
that supporting viewpoints and perspectives and dealing with inconsistent, uncertain and vague information,
will play a paramount role in NeOn. To be able to address these usage scenarios for context, we identified
that the following approaches for contexts are relevant for NeOn: The networked ontology model developed
in WP1 provides the most obvious form of context: Ontologies will be embedded in a network of ontologies,
which forms the context for its interpretation. In the networked scenarios of NeOn, ontologies are not treated
as isolated entities, but are related to other ontologies in various networked ways, including versioning and
mapping information etc. These other ontologies together with these links can be understood as a context
for the ontology, as they will (in some cases) alter the knowledge which can be inferred from the ontology.
The discussion of the networked ontology model will be provided by WP1. So we will not include it in the
deliverable. Reasoning with inconsistent ontologies exploiting context information is important when different
information sources with contradicting information will be integrated. Contextual information can be used

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Figure 1.1: Relationships between different workpackages in NeOn

to resolve such conflicts. It can be used to select relevant consistent parts of the knowledge base which
suffice for the task at hand. Contextual information provides guidance for this selection process, as usually
different possibilities exist for resolving an inconsistency. Context-based selection functions appear promising
for addressing a number of different problems. Finally, a combination of possibilistic and probabilistic logics
seems to be required to deal with the various forms of vagueness and uncertainty in a contextualized way.
The numerical values or priority information attached to elements of an ontology will provide important context
information to deal with imprecision in an ontology.

Considering these findings, in this deliverable we define the NeOn formalism for context representation. In
particular, we describe instantiate our generic definition of context for two specific forms of context: Prove-
nance and Arguments.

Another important aspect we need to address is how the context can be syntactically represented to be able
to relate an ontology with its context. We therefore propose so called groundings of the context representation
within OWL that allow to specify the context itself in the form of an OWL ontology.

When dealing with inconsistency and uncertainty, there are usually several alternative solutions available and
we need to explore ranking information to select the best solution. This ranking information can be generated
by ontology learning. We can also obtain the ranking information by measuring incoherence in an incoherent
OWL ontology. For example, by measuring the extent of incoherence of different ontologies, we can give a
rank on them. That is, an ontology is more reliable than another one if it contains less incoherent information.
Similarly, by measuring the extent of incoherence of different axioms, we get some ranking information on
axioms which can be used to resolve incoherence [KPSG06].
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1.3 Overview of the Deliverable

In this deliverable we start with a generic and abstract definition of context in Chapter 2. This definition was
already used in the state-of-the-art deliverable on context representation languages D3.1.1 [HHR+06]. In
Chapter 3 we then present instantiations of this generic definition for a number of types of contexts that we
identified as particularly interesting for the NeOn project. We provide an OWL-based syntax for context in
Chapter 4. Finally, in Chapter 5 we give an example on how context information can be used in reasoning
with ontologies, specifically for measuring incoherence in ontologies. We conclude with a roadmap for future
work in Chapter 6.

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Chapter 2

A Generic Definition for Context

In this chapter we recapitulate the formal definition of context of an ontology1, which we first provided in
D3.1.1 [HHR+06]. This definition does not attempt to give a notion of "context" in a more general sense. It
is also not intended to be operationalized in a reasoner. The purpose of this definition rather is to provide a
basis for a being able to characterize different context representation formalisms within a common framework
by instantiating the generic definition.

Contexts as modifiers of semantics. We are interested in knowledge expressed as a set of assertions
and rules. Examples are knowledge bases (or ontologies), and relations between such knowledge bases.

If such a set of assertions is put into a context, then this means that the context alters some of the meaning
of the set of assertions. In other words, the context acts as a modifier for the semantics of a knowledge base.

2.1 Formal abstract definition of context for an ontology

Let K be a knowledge base, which comes with an associated semantics S(K). Thus, S is a function which
associates a semantics to any knowledge base K.

Now, given a context C and a knowledge base K, we denote by S′(K,C) the semantics of K in the context
C. Thus, S′ is a function which associates to any knowledge base K and context C a semantics, e.g.
expressed by the set of all logical consequences of K in the context C.

If we have empty context (denoted by ∅), then often we require S′(K, ∅) = S(K).
Note that there is a convenient way to describe the function S′ in many cases. Given a knowledge base K
and context C, it will often be possible to create a knowledge base K ′ such that S′(K,C) = S(K ′). In these
cases, reasoning within a context can be reduced to changes of the knowledge base K (converting it into
K ′), and by reusing existing reasoners.

Formal Definition of Context We will now go into further detail. Taking some language L, a knowledge
base on L is a (possibly infinite) set of statements over L. Let KB(L) denote the set of all knowledge bases
expressible in L.

Now, we consider a language Lk called knowledge language. A semantics for Lk can be formalized as a
function S : KB(Lk) → KB(Lk) assigning to a knowledge base K a knowledge base S(K) containing all
logical consequences of K expressible in the knowledge language.

Let furthermore be Lc a language called context language for expressing contextual knowledge. An Lc-
context semantics for Lk is then a function S : KB(Lk) × KB(Lc) → KB(Lk). (The overloading of the
symbol S is by purpose.)

1Please note that within this deliverable we do not distinguish between the use of the notion of "ontology" and that of "knowledge
base". However, for the logical characterization, we tend to prefer the term "knowledge base".
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In practice, one will mostly impose further restrictions on the knowledge base one works with. E.g., a knowl-
edge base could be required to contain only certain kinds of expressions from Lk – as an easy example, take
a database containing only tuples of entities (or, similarly, a logic program containing only ground facts) while
the entailed knowledge (respectively the expressible queries) could have a much more complex structure.
Another common constraint to knowledge bases is that they have to be finite (or at least finitely representable
in some sense). The set of finite knowledge bases over some language Lk will be denoted by KBfin(Lk).
In many cases, additional constraints will be reasonable. In particular, we will call a context semantics

• conservative, if S(K, ∅) = S(K) for all K ∈ KB(Lk). This means that, if an empty context (i.e. no
contextual information) is provided, the semantics coincides with the “pure” semantics of the knowledge
language.

• extensive, if K ⊆ S(K,C) for all K ∈ KB(Lk) and for all C ∈ KB(Lc), i.e., all statements of the
knowledge base are as well logical consequences of it. In other words, any information stated in the
knowledge base can be deduced to be valid (and cannot be spoilt by whatever context provided).

• knowledge-monotone, if K1 ⊆ K2 implies S(K1, C) ⊆ S(K2, C) for all K1,K2 ∈ KB(Lk) and
C ∈ KB(Lc), i.e., all logical consequences remain valid if the knowledge base is augmented and the
context does not change. Note, that this is not always the case (cf. non-monotonic semantics by closed
world assumption).

• context-monotone, if C1 ⊆ C2 implies S(K,C1) ⊆ S(K,C2) for all C1, C2 ∈ KB(Lc) and K ∈
KB(Lk), i.e., if the information given by the context increases, the derivable information does so as
well. In particular, no previously valid consequence can be invalidated by adding more contextual
knowledge.

• idempotent, if S(S(K,C), C) = S(K,C) for all C ∈ KB(Lc) and K ∈ KB(Lk), i.e., taking all
consequences of a knowledge base under a certain context and then taking again all consequences
under the same context will yield nothing new.

• dependently reducible, if there is a function σ : KB(Lk)×KB(Lc) → KB(Lk), such that S(K,C) =
S(σ(K,C), ∅), i.e., knowing a knowledge base K and a context C, one can determine a new finite
knowledge base with the same set of consequences as K with context C. I.e. for every contextualized
knowledge base we can determine a logically equivalent knowledge base without context.

• independently reducible, if there is a function τ : KB(Lc) → KB(Lk) such that S(K,C) =
S(K ∪ τ(C), ∅) for all K ∈ KB(Lk) and C ∈ KB(Lc), i.e., any context can be "translated" into
Lk (independently from K) and simply added to the knowledge base. In this case, contextual reason-
ing could be reduced to pure reasoning over Lk, such that existing methods could easily be employed
for this.

The above definition is very abstract. This is done on purpose to accommodate the many practically important
ways of context usage. In Chapter 3, we give some examples of concrete instances of the abstract definition.
Many more notions of context fit our general definition. In the project, we will have to determine which
concrete instances will be used and supported by the NeOn system. These instances will have to be dealt
with on an individual basis when realizing the NeOn system.

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Chapter 3

Instantiation

In this chapter we present instantiations of the generic definition from the previous chapter for a number of
types of contexts. NeOn has in its core the ambitious scenario that ontologies are developed in the open
environment in a distributed fashion. Moreover, it is not just the ontologies and meta-data that are distributed,
but we also assume that they are built by distributed teams. In terms of the usages of context, this means
that supporting viewpoints and perspectives will play a paramount role in NeOn. In the scenarios addressed
by NeOn, information sources typically cannot be easily integrated without violating the overall consistency
of the system. Thus dealing with inconsistent information will be another important usage of context, where
information about the provenance of ontological structures, about various contexts and user profiles leads to
the generation of local consistent views out of a globally inconsistent network of ontologies. Closely related
is the problem of dealing with uncertain and vague information, which will play an important role in the
NeOn scenarios, where ontologies are generated from a variety of sources that may be imprecise, vague
and contextualized in the first place (e.g. natural language text) and where automated ontology learning
algorithms introduce an additional dimension of uncertainty. In D3.1.1 we identified the following forms of
reasoning with context as particularly interesting for the NeOn project:

• The networked ontology model developed in WP1 will provide the most obvious form of context: On-
tologies will be embedded in a network of ontologies, which forms the context for its interpretation.
Depending on the types of relationships in the network of ontologies, different forms of context can be
realized: The context may be a temporal one if the network represents a version space; it may be used
to connect different viewpoints via alignments, etc.

• Reasoning with inconsistent ontologies exploiting context information will be important when different
information sources with contradicting information will be integrated.

• Context-based selection functions appear promising for addressing a number of different problems.
However, the development of such functions that go beyond the state-of-the-art syntactic-based func-
tions will require significant research efforts.

• Finally, a combination of possibilistic and probabilistic logics seems to be required to deal with the
various forms of vagueness and uncertainty in a contextualized way.

As the semantics of the networked ontology model is specified as part of WP1, we do not provide its formal-
ization as part of this deliverable. Instead, we focus on the types of context to support the latter three aspects
of context reasoning. In particular, we describe Provenance as a form of context that is typically available for
automatically generated ontologies – e.g. in ontology learning – and Argumentation Structures as a form of
context that is obtained in collaborative ontology engineering processes.



D3.1.2 Context Representation Formalism Page 13 of 34

3.1 Provenance as Context in Dealing with Imperfect Information

In many cases, the information derived from diverse sources leads to inconsistencies. This is especially the
case if information is derived using automatic knowledge acquisition tools such as wrappers [FK00] or infor-
mation extraction systems (e.g. [Cir01], [BCRS06]) or tools for automatic or semi-automatic ontology learning
such as OntoLT [BOS03], OntoLearn [NVCN04], ASIUM [FN98] or Text2Onto [CV05] that aim at the semi-
or even fully automatic extraction of ontologies from sources of textual data. Common to all of them is the
need for handling the uncertainty which is inherent in any kind of knowledge acquisition process. Moreover,
ontology-based applications which rely on learned ontologies have to face the challenge of reasoning with
large amounts of imperfect information resulting from automatic ontology generation systems.

Different causes for the imperfection of information can be found identified. According to [AM97] imperfection
can be due to imprecision, inconsistency or uncertainty. Imprecision and inconsistency are properties of the
information itself - either more than one world (in the case of ambiguous, vague or approximate information)
or no world (if contradictory conclusions can be derived from the information) is compatible with the given
information. Uncertainty means that an agent, i.e. a computer or a human, has only partial knowledge
about the truth value of a given piece of information. One can distinguish between objective and subjective
uncertainty. Whereas objective uncertainty relates to randomness referring to the propensity or disposition
of something to be true, subjective uncertainty depends on an agent’s opinion about the truth value of the
information. In particular, the agent can consider information as unreliable or irrelevant.

Depending on the type of imperfection, different approaches for interpreting the information may be adequate.
For each of them, the provenance of information can be exploited, as we have outlined in the deliverable
D3.1.1 [HHR+06].

There are mainly two classes of languages for representing dealing with uncertainty: probabilistic logic and
possibilistic logic. Dealing with probabilistic uncertainty in the Semantic Web has been recognized as an
important problem in the recent decades. Many approaches have been proposed to extend description
logics with probabilistic reasoning [Jae94, Hei94, GL02, DS05, NF04, DP04, KLP97]. These approaches
can be classified according to ontology languages, the supported forms of probabilistic knowledge and the
underlying probabilistic reasoning formalism. In probabilistic extensions of description logics, a probability
value (or an interval) is often attached to a conditional constraints of the form (D|C), where C and D are
concepts. By contrast, there is relatively few work on combining possibilistic logic and description logic.
Possibilistic logic [DLP94] or possibility theory offers a convenient tool for handling uncertain or prioritized
formulas and coping with inconsistency. It is very powerful to represent partial or incomplete knowledge
[BLP04]. There are two different kinds of possibility theory: one is qualitative and the other is quantitative.
Qualitative possibility theory is closely related to default theories and belief revision [DP91, BDP92] while
quantitative possibility can be related to probability theory and can be viewed as a special case of belief
function [DP98]. One of the major problems with the quantitative possibility theory is that the weights attached
to formulas are usually hard to obtain. When numerical information is not available, we often use qualitative
possibility theory. In this case, a possibilistic knowledge base can be viewed as a stratified knowledge
base, i.e. knowledge bases in which all pieces of information are assigned a rank. The confidence values
attached to axioms in possibilistic description logics are often used to represent priority levels of the axioms.
A challenging problem here is to extract ranking information from an inconsistent or incoherent ontology.
In Chapter 5, we will provide some approaches to automatically computing the ranking on axioms in an
ontology.

Fusing mutually inconsistent knowledge extracted from heterogeneous sources in essence requires (i) an
algorithm to pinpoint down where the inconsistencies arise, (ii) a procedure to resolve inconsistencies by
removing axioms leading to these inconsistencies, as well as (iii) a representation of the provenance of
axioms as context information on the basis of which to decide which axioms should be removed.

For the knowledge fusion scenario, we intend to build on the approach of [HV05] to find minimally inconsistent
axioms sets within a given ontology. The idea behind minimally inconsistent axiom sets is that the removal
of one axiom in each set will lead to consistency. The decision which axiom to remove can then indeed be

2006–2007 c© Copyright lies with the respective authors and their institutions.
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guided by the provenance context as described above.

In the following, we introduce a model for representing provenance in ontology learning. The main part of the
model is shown in Figure 3.1. We associate with each of the learned ontology elements a confidence and a
relevance value which allow for a more target-oriented inspection of the learned ontology. Both confidence
and relevance values can be considered as context annotations defined as follows:

Figure 3.1: Provenance Context for Ontology Learning

• We use a confidence rating to indicate how confident the system is about the correctness of an
ontology element. The confidence rating is determined by the number and quality of evidences found
in the corpus.

• We use a relevance rating to denote the relevance of an ontology element with respect to a particular
domain given by the corpus.

In addition to confidence and relevance values each ontology element is associated with evidences and
references that can be used to generate formal or informal explanations for particular results.

Evidences are the basis for any computation of a confidence value. Typical examples for evidences which
may lead to the creation of a subclass-of relation, for instance, include Hearst patterns [Hea92] and
hyponymy relationships in WordNet [Fel98].

References are pointers to occurrences of the regarding element in the corpus or other underlying knowl-
edge sources such as ontologies or lexical resources. Adding a list of references to each ontology element
not only increases the traceability of the ontology learning process, but also facilitates the detection of ontol-
ogy changes in case of changes to the corpus.

Further extensions can be made to the model to represent information about the algorithms which suggested
the addition or removal of a particular ontology element, learning parameters and timestamps.
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Axiom t Confidence
Architecture v ¬Tool 0.10
Methodology v ¬Tool 0.10
Tool v Implementation 0.40
Application(kavido) 0.46
Tool(kavido) 0.46
Tool(amilcare) 1.0
Tool v ¬Application 0.3

Table 3.1: Sample ontology with confidence values

3.1.1 Ontology learning example

In this subsection, we use an example from [HV05] to illustrate how confidence values attached to axioms
of an ontology can be used to deal with imperfect information. In this example, the ontology is obtained by
ontology learning.

Let us consider the ontology in Table 3.1 below. The example exhibits two forms of imperfection: First, the
elements of the learned ontology are uncertain, as indicated by the confidence values that are attached to
the axioms in the ontology. Second, the obtained knowledge is inconsistent: Here KaV iDo was identified
to be both an instance of Application and a Tool, however, Application and Tool were learned to be
disjoint concepts, so the ontology is inconsistent. We may consider two ways to deal with inconsistency in
the ontology: we can either delete some axioms to restore inconsistency or tolerate the inconsistency and
apply possibilistic logic approach.

To resolve inconsistency, we first need to find the minimally inconsistent sub-ontologies of the inconsistent
ontology based on the algorithm. There is only one minimally inconsistent sub-ontology which contains
the following axioms: Tool v ¬Application, Application(kavido), Tool(kavido). Taking the confidence
values of the axioms into account, we can resolve the inconsistency by removing the disjointness axiom
whose confidence value is the lowest. In this case, removing the axiom Tool v ¬Application would yield a
consistent ontology.

We next illustrate how to reason with the inconsistent ontology using possibilistic logic. In this case, the
confidence values attached to axioms are explained as certainty degrees of the axioms. We first need
to find the inconsistency degree of this ontology, which is the maximal weight of axioms such that all the
axioms whose weights are greater than or equal to it are inconsistent. An axiom can be inferred from the
ontology using possibilistic inference if and only if it can be inferred from axioms whose weights are greater
than the inconsistency degree. For the ontology in this example, its inconsistency degree is 0.3. So, we
can infer Tool(kavido) whose weight is 0.46, which is greater than 0.3. Furthermore, we can also infer
Implementation(amilcare) with confidence degree 0.40 using possibilistic inference.

3.1.2 Instantiation of the Generic Definition

Let K be a knowledge base in an ontology language L. The context information is the confidence and
relevance values attached to formulae in the knowledge base. In the case of probabilistic logic, the context
language is the conditional probabilistic terminology for probabilistic logic or conditional probability table for
Bayesian networks. The semantics of the context language is a knowledge base which consists of K and
probabilistic terminologies. Whilst in the case of possibilistic logic, the context information can be used to
obtain the weights or priority levels attached to formulae in the knowledge base. That is, S(K,C) is a
weighted knowledge base or a prioritized knowledge base.

The context information can be also used to guide how to resolve inconsistency in the knowledge base. It is
clear that this context language is conservative. However, it is neither extensive nor knowledge-monotonic,
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because the underlying logic (i.e. possibilistic logic) is inherently nonmonotonic.

3.2 Argumentation Structures as Context

Argumentation frameworks usually provide information that can be useful to provide information about the
context of ontology elements.

The two classical approaches on argumentation theory [Tou58, POT70] provide general schemas for rep-
resenting argumentative processes. However, argumentation is a large field in continuous evolution and
proposed frameworks vary from informal to rigorous formal ones. One acknowledged problem of these the-
ories is the fact that it is difficult to find the appropriate level of detail with which to represent arguments.
For some more details about argumentation theories see D2.1.1. In the case of ontology based argumen-
tation frameworks, DILIGENT [TPSS05] proposes an argumentation ontology that can be used to formally
represent the arguments exchanged by ontology engineers in ontology building processes. Some initial ex-
periments have been conducted. Another framework currently under development under the Neon Project is
C-ODO [CGL+06].

These frameworks usually provide important information that can be used in context representation and
moreover that can be used in inference processes. In the following paragraphs we are taking as starting
point the DILIGENT argumentation framework [TPSS05, Tem06]. The DILIGENT argumentation ontology
adapts, for ontology engineering purposes, the IBIS methodology, which proposes one model to formally
structure arguments. The DILIGENT argumentation framework consists of two building blocks; a process and
an argumentation ontology. In the argumentation process five main activities take place: choose moderator,
choose decision procedure, specify issues, provide arguments and ideas, decide on issues and ideas. The
argumentation ontology formalizes the arguments exchanged during ontology engineering discussions.

The DILIGENT Argumentation Ontology is visualized in Figure 3.2. It formalizes the arguments exchanged
during ontology engineering discussions. The main concepts in this ontology are issues, solution proposals
and arguments. An issue introduces a new requirement or topic in a discussion from a conceptual point of
view. Issues may refer to particular ontology elements. They are used to discuss problems in the definition of
ontology elements without yet taking into account how the problems should be resolved and implemented in
the ontology. Solution proposals are put forward as ideas to address issues and refer to their formalization in
the ontology, for instance as a class, instance, relation or axiom. Typically, a solution proposal encompasses
one or more ontology changes that may affect the definition of ontology elements. New requirements or
topics are introduced as issues, which can be extended or refined by generalizing or specializing an issue.
When the experts start discussing how a given issue, a domain concept, can be represented in the ontology,
they discuss in terms of solution proposals, how domain knowledge can or should be formalized. Accepted
solution proposals trigger concrete ontology change operations. Arguments can be exchanged on particular
solution proposals, either supporting an idea or objecting (counter-argument).

The concepts an ontology represents should be consensual, this requires some consensus building discus-
sions. In DILIGENT processes, concepts are only added to the ontology if they can be agreed upon, that
is after some arguments have been exchanged, positions by different actors have been issued on them and
some decisions have been made. DILIGENT proposes examples, evaluations and justifications as partic-
ularly useful argument types. Those involved in discussions can state positions. They clarify the position
on one particular solution proposal under discussion. Possible positions are agreement and disagreement.
Once enough arguments have been provided and positions have been stated on them, decisions can be
made. In general, positions lead to decisions. Decisions are taken on issues. A decision has a status that
can vary from under-discussion, postponed, discarded and agreed. A decision records not only the issue on
which it was taken, but also both the positions issued when final with-votes (several positions) were cast and
the line of reasoning (a sequence of arguments) underlying the decision on that issue.

The argumentation structures can be exploited as context information in various ways in the ontology rea-
soning. In the following we will illustrate how this can be done for the task of diagnosis and repair. Diagnosis



D3.1.2 Context Representation Formalism Page 17 of 34

Figure 3.2: The major concepts of the argumentation ontology and their relations

and repair of ontologies is an important aspect of ontology engineering. This is especially the case in collab-
orative engineering environments, where there may be conflicts and disagreements about the meaning and
definition of concepts among the ontology engineers.

Reasoning agents can be useful in different steps of the argumentation process: Indeed, in every phase they
can act in place of a user, i.e. they can identify issues, they can propose solutions, they can take positions and
they can provide arguments. Identifying issues corresponds to the identification of a logical contradiction in
the ontology. To resolve the logical contradiction, it is important to pinpoint the erroneous class definitions in
the ontology which are responsible for the contradiction. (Please refer to [QHJ07] for an overview of different
approaches for this task.) When repairing an ontology, we usually have different alternatives to resolve the
incoherence, i.e. the diagnosis algorithms may generate a number of different solution proposals. Some
context information such as ranking information is often needed to select the best solution [KPSG06]. The
idea here is to use the argumentation structures as context information to define useful rankings for the
different solution proposals. Based on the ranking, the reasoning agent would define a position on a solution
proposal, i.e. recommending one (or multiple) solution proposals to implement. The final decision can then
either be done automatically (by accepting the recommendation of the reasoning agent) or it can be left to
the user. If the decision is left to the user, the individual arguments can be presented to the user (based on
the argumentation ontology) in order to support the decision process.

2006–2007 c© Copyright lies with the respective authors and their institutions.
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3.2.1 The University example

Let us suppose we want to model the University domain. In a DILIGENT ontology engineering process
participants would start by proposing issues and after enough arguments had been provided and that par-
ticipants had reached an agreement as to what should be represented in the ontology, the arguments would
be attached to ontology elements. We will be using the real data from the discussions that took place in one
of the DILIGENT case studies, partially reported in [PST04]. We here assume that the ontology targeted by
Figure 3.3 contains concepts such as organization, and in particular university, persons, employees, Profes-
sors, students, PhD students, study programs. All these concepts are all related since university employees
work at universities, both Professors and PhD students are university employees, students are enrolled in
study programs and these are offered by universities. In the figure, we use the symbol circle to denote the
disjointness of two concepts Students and (Uni)Employees.

This example contains a contradiction: PhDstudents are both subclass of Students (PhDstudentsvStudents)
and University Employees (PhDstudentsvEmployees), and these classes are disjoint
(StudentsuEmployeesv⊥). To resolve the contradiction, we can get an ordering relation on the ax-
ioms which are involved in the conflict based on argumentation information. Then we can simply delete the
axiom which has least priority.

Figure 3.3: University ontology

In the argumentation ontology, we may have the following structures:

• SolutionProposal to introduce PhD students being students:
Arguments:
support: Students are enrolled in student program.
objects: Student need to pay taxes.
Voting on this SolutionProposal: 4 agreements; 2 disagreements

• SolutionProposal to model PhDStudent as subclass of Employee
Arguments:
support: PhD students work on projects; They have a salary.
objects: PhD students have a scholarship; They do not have a contract;
Voting on this SolutionProposal: 4 agreements; 3 disagreements

• SolutionProposal to define students disjoint from employees
Arguments:
support: Students cannot be employed by the university, as they are enrolled in study program.
objects: Students may work as as research assistants and tutors, thus as employees
Voting: on SolutionProposal: 3 agreements; 3 disagreements
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To resolve the incoherence in the University ontology, we have at least the following three solutions: (1) delete
the class definition PhDStudents is a subclass of Students, or (2) delete the class definition PhDStudents
is a subclass of Employees, or (3) delete the class definition “Students disjoint from Employees". However,
without extra information, we do not know which class definition should be deleted. In this case, we can turn
to argumentation ontology to get some ranking information on the class definitions. In the argumentation
ontology, the difference between numbers of argument support and against “PhD students being students"
is 0, the difference between numbers of argument support and against “PhD students being employees" is
1, and the difference between numbers of argument support and against “students disjoint from employees"
is 2. Therefore, we can conclude that the class definition that “PhD students being students" has the least
priority. So we can simply delete this class definition to restore coherence.

3.2.2 Instantiation of the Generic Definition

Let K be a knowledge base in an ontology language L. The context information C is then the set of ar-
guments which are provided by actors and is stored in an argumentation ontology. The semantics of K
in the context C is then an ontology which contains both K and C. It is clear that the context semantics
is conservative and idempotent. According to the University example, it is clear that the context seman-
tics is not extensive because the axiom “PhD students being students" is not included in the final result.
It is neither knowledge-monotone nor context-monotone. For knowledge-monotone, if we add an axiom
PhDStudents(John) to state that John is a PhD student and an argument for it and an argument again
it. Then we may delete the axiom PhDStudents(John) and keep the class definition that “PhD students
being students". So knowledge-monotone is violated. For context-monotone, suppose we have more argu-
ments support the class definition “PhD students being students", for example, PhD students need to attend
lectures and PhD students have a student card, then we may delete the class definition “PhD students being
employees" to restore consistency.

3.3 Summary

In this chapter, we considered two types of context which are of particular interest to NeOn project: prove-
nance and argumentation structures. We then related these two types of context to the general definition
of context given in Chapter 2. In the next chapter we will discuss how the context can be syntactically
represented to be able to relate an ontology with its context. After that, we will give some approaches for
measuring inconsistency to illustrate how to automatically get ranking information on axioms from an inco-
herent ontology.
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Chapter 4

Representing Context in OWL Ontologies

In this chapter we address the question how the context can be syntactically represented to be able to relate
an ontology with its context. We therefore propose so called groundings of the context representation within
OWL that allow to specify the context itself in the form of an OWL ontology. This requires to talk about the
elements of the ontology, its facts and axioms as first class objects. However, when talking about ontologies
and their elements themselves – i.e. annotating them with context, for example about their provenance,
trustworthiness, arguments – we are severely restricted. For example, treating classes and individuals on
the same metalevel, introduces difficulties and is not possible in the decidable variants of the OWL ontology
language. Also, in OWL it is currently not possible to talk about axioms as first class objects in the language.

Our approach – as originally presented in [VVH+06] – builds on the metamodel for networked ontologies as
described in D1.1.1 [HRW+06]. As extension, we also include axioms as elements in the metamodel (c.f.
Figure 4.1). We propose two different possible groundings of the metamodel in the OWL DL language. The
first approach relies on a meta-ontology to ground the metamodel in a way compatible with the current OWL
1.0 standard. The other grounding requires an extension of OWL 1.0 by introducing URIs for axioms in the
ontology. This extension will be available in the OWL 1.1 language.

4.1 Alternatives for Representing Context in OWL

4.1.1 Annotation Compatible with OWL 1.0 using a Meta-Ontology

We have defined an OWL DL meta-ontology1 to capture the metamodel as presented in the previous section.
In this ontology we explicitly also capture axioms. Ontologies can be transformed to become instance data
with regards to the vocabulary of the meta-ontology. We here first present a small fragment of the meta-
ontology that reflects the part of the metamodel shown in Figure 4.1. Then we will give a small example, how
an ontology looks like when transformed. Note that axioms, in this case, translate to proper individuals as
well, and thus become annotatable, as we will show in the example.

(1)CLASS v ONTOLOGYENTITY

(2)AXIOM v ONTOLOGYELEMENT

(3)SUBCLASSOFAXIOM v AXIOM

(4)EQUIVALENTCLASSAXIOM v AXIOM

(5)DISJOINTWITHAXIOM v AXIOM

(6)> v ∀SUBCLASSOFSUBCLASS.CLASS

(7)> v ∀SUBCLASSOFSUBCLASS−1.SUBCLASSOFAXIOM

(8)> v≤ 1 SUBCLASSOFSUBCLASS.>
(9)> v ∀SUBCLASSOFSUPERCLASS.CLASS

(10)> v ∀SUBCLASSOFSUPERCLASS−1.SUBCLASSOFAXIOM

(11)> v≤ 1 SUBCLASSOFSUPERCLASS.>
1http://owlodm.ontoware.org/OWL1.0
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Figure 4.1: Main Elements of the Ontology Definition Metamodel

(12)> v ∀EQUIVALENTCLASS.CLASS

(13)> v ∀EQUIVALENTCLASS−1.EQUIVALENTCLASSAXIOM

(14)> v ∀DISJOINTWITH.CLASS

(15)> v ∀DISJOINTWITH−1.DISJOINTWITHAXIOM

Axioms 1-5 define the terms used. Every axiom type is defined by a class of its own (refer to the following
example). The rest of the axioms defines the domain and ranges of the used properties.

In the following, we demonstrate the use of the meta-ontology based on the small ontology from the Ontology
Learning example in Section 3.1.1, stating that tools and applications are disjoint concepts:

TOOL v ¬APPLICATION

Using the meta-ontology, we can represent this ontology as follows:

CLASS(Tool)
CLASS(Application)
DISJOINTWITHAXIOM(axiom1)
DISJOINTWITH(axiom1,Tool)
DISJOINTWITH(axiom1,Application)

Note that the class TOOL is something else than its representing individual in the meta-ontology, which is the
individual Tool. The axiom of the original ontology is reified explicitly as the individual axiom1, an instance of
the class DISJOINTWITHAXIOM (as it is an axiom that represents a subclass relation between to classes). The
axiom is connected to the entities taking part in that axiom with the given properties (i.e., the DISJOINTWITH

property points to the classes in the axiom that are stated to be disjoint with one another).

Now it is possible to state further facts about this axiom, like its source or the confidence we put into the
axiom, within the ontology:

CREATOR(axiom1, text2onto)
CONFIDENCE(axiom1, 0.3)
Naturally, we also can talk about the entities of the ontology in the same manner:

CREATOR(Tool, text2onto)
We have implemented the presented approach of creating a meta-ontology out of OWL DL ontologies within
OWL DL. The implementation is available as part of the KAON2 OWL tools2, and is based on the KAON2

2http://owltools.ontoware.org
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reasoner and ontology management infrastructure [MS05]. Two tools are currently implemented:

• owl meta creates a meta-ontology from an input ontology. Both the ontological entities like individ-
uals, properties and classes, as well as the axioms of the ontology are transformed. The ontology is
transformed in such a way that it can be safely merged with the original ontology itself, thus allowing
for rich metadata within the ontology without breaking it.

• owl demeta on the other hand takes a meta-ontology and creates the ontology that would have
caused the given meta-ontology.

A problem with the meta-ontology is that it is considerably bigger than the original ontology. As every ontology
entity is described with an extra axiom, and every already existing axiom is described with at least two further
axioms, the meta-ontology often is three or four times as big as the original ontology. Typically, the meta-
ontology is only processed automatically, and not presented to the user. Therefore, it remains a question of
scalability of the tools and higher requirements regarding resources, but the user does not have to deal with
the growing size of the ontology. The actual growth rate depends on structural properties of the ontology, but
is basically a constant factor to the size.

4.1.2 Annotations of Axioms with URIs

In this section, we discuss an alternative grounding for the proposed metamodel. In contrast to the one
above, these approaches require an extension of the current OWL 1.0 standard in order to assign URIs to
axioms. These extensions will be available in the OWL1.1 language. That is, axioms become entities in the
ontology that can be referred to, i.e. they are reified in the ontology. In the following, we denote the URI of an
axiom within square brackets following the axiom3:

TOOL v ¬APPLICATION [axiom1]
We are now able to refer to the axiom using its URI. Depending on how this is done, we distinguish two
approaches discussed in the following.

Annotations using a Meta-Ontology

In this approach, a separate meta-ontology in OWL DL is employed in order to make statements about
ontology elements in a similar way as in the approach described in Section 4.1.1. However, it is not required
anymore to reproduce the entire ontology within the meta-ontology, as we are now able to refer to all elements
of the original ontology – including its axioms – via their URI:

AXIOM(axiom1)
CREATOR(axiom1, text2onto)
CONFIDENCE(axiom1, 0.3)

Annotations using Annotation Properties

The final grounding we propose abandons the use of a meta-ontology. Instead, annotation properties are
used for the representation of metadata about ontology elements. In the current version of the specification
of OWL DL, it is possible to annotate ontology entities (i.e., classes, properties and individuals) in this way.
We here propose to allow such annotations also for axioms. The above example would then look as follows:

TOOL v APPLICATION [axiom1]
CREATOR(axiom1, text2onto)
CONFIDENCE(axiom1, 0.3)

3For the serialization of this extension in an XML based syntax, we follow the approach taken in the current proposal for the OWL
1.1. language.
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In contrast to the grounding described in Section 4.1.2, CREATOR and CONFIDENCE here denote annotation
properties. These annotations constitute non-logical information, meaning that their treatment is outside the
(regular) semantics of OWL. They can thus be stored within the original ontology without causing semantic
conflicts.

4.2 Summary

In this chapter, we have presented a proposal on how to represent context information as annotations to
ontology elements in OWL DL ontologies. The proposal is based on an extension to the networked ontology
model, in which axioms are also treated as ontology elements and identifiable via a URI. We are thus able to
capture context of axioms, which is critical for many use cases of context. We have presented a number of
different groundings that are compatible with the current OWL 1.0 standard.

The extensions to refer to axioms in the ontology via a URI will be directly available in the OWL 1.1 language.
The grounding of our proposal will then be much more straight-forward.
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Chapter 5

Measuring Incoherence in OWL DL

Incoherence can occur for several reasons, such as modeling errors when constructing an ontology and
migration or merging of ontologies [Sch05]. For example, two upper ontologies SUMO and CYC are used in
a single document, there exist over 1000 unsatisfiable concepts. Currently, there are many discussions on
how to debug and diagnose terminologies in ontologies [KPSG06, SC03, Sch05]. Therefore, incoherence
is often viewed as negative information in an ontology. However, by measuring incoherence, we can get
some useful context information for maintaining and evaluating an ontology. For example, by measuring the
extent of incoherence of different ontologies, we can rank them. That is, an ontology is of better quality
than another one if it contains less incoherent information. Similarly, by measuring the extent of incoherence
of different axioms, we get some ranking information on axioms which can be used to resolve incoherence
[KPSG06]. Furthermore, there is a trade-off between the amount of useful information in an ontology and
the amount of coherent information. For example, in the extreme, we could guarantee a coherent ontology
by only having the empty ontology. Obviously, this would not be acceptable, and so we need to tolerate the
possibility of some incoherence in an ontology. Once, we do tolerate this possibility, we need to consider
keeping track of it, perhaps as part of a process of improvement, or as a way of isolating the problematical
parts of the ontology until we decide to fix those parts. So for these tasks, it is helpful to know where and
by how much there is incoherence. This may include consideration of whether it is widespread, or localized.
So the size and overlaps of incoherent subsets can provide important context information for dealing with
incoherence and inconsistency. A simple way to measure incoherence is to consider the arguments for and
against incoherent concepts.

In this chapter, we propose some approaches for measuring incoherence in DL SHOIN which provides
the foundation for the W3C Web Ontology Language OWL. In our framework, based on scoring functions
[Hun04], we present two classes of measures of incoherence: measures of incoherence for unsatisfiable
concepts and measures of incoherence for terminologies. First, we define the scoring function for an un-
satisfiable concept and use it to define a score ordering on unsatisfiable concepts. Second, we define the
scoring function for a TBox and use it to define an ordering on terminology axioms and an ordering on
TBoxes.

The approaches for measuring incoherence in OWL ontologies will allow us to automatically obtain context
information. This context – in the form of ranking information – can be exploited in dealing with imperfect
information, where there are usually several alternative solutions available and we need to explore ranking
information to select the best solution.

5.1 Incoherence in OWL ontologies

We introduce the notion of incoherence in OWL ontologies defined in [FHP+06].

Definition 1 (Unsatisfiable Concept) A concept name C in a terminology T , is unsatisfiable iff, for each
interpretation I of T , CI = ∅. The set of all unsatisfiable concept is denoted as US(T ).
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That would lead us to consider the kinds of terminologies and ontologies with unsatisfiable concepts.

Definition 2 (Incoherent Terminology) A TBox T is incoherent iff there exists an unsatisfiable concept
name in T .

Definition 3 (Incoherent Ontology) An ontology O is incoherent iff its TBox is incoherent.

According to the above definitions, we know that the incoherence can occur only in the terminology level.
Namely, an ontology O = 〈T ,R,A〉 is incoherent iff its terminology TBox is incoherent. Therefore, when
we talked about an axiom in an ontology, we only mean the concept inclusion axiom. Incoherence does
not provide the classical sense of the inconsistency because there might exist a model for an incoherent
ontology.

Definition 4 (Inconsistent Ontology) An ontology O is inconsistent iff it has no model.

However, incoherence and inconsistency related with each other. According to the discussion in [FHP+06],
incoherence is potential for the cause of inconsistency. That is, suppose C is an unsatisfiable concept in T ,
if a concept assertion C(a) exists in the ABox A, then the ontology O is inconsistent.

In the following, we introduce some definitions which are useful to explain logical incoherence.

Definition 5 [SC03] Let A be a concept name which is unsatisfiable in a TBox T . A set T ′⊆T is a minimal
unsatisfiability-preserving sub-TBox (MUPS) of T if A is unsatisfiable in T ′, and A is satisfiable in every
sub-TBox T ′′ ⊂ T ′. The set of all MUPS of T with respect to A is denoted as MUA(T )

A MUPS of T and A is the minimal sub-TBox of T in which A is unsatisfiable.

Definition 6 [SC03] Let T be an incoherent TBox. A TBox T ′⊆T is a minimal incoherence-preserving sub-
TBox (MIPS) of T if T ′ is incoherent, and every sub-TBox T ′′⊂T ′ is coherent. The set of all MIPSs of T is
denoted as MI(T ).

A MIPS of T is the minimal sub-TBox of T which is incoherent. We say a terminology axiom is in conflict in
T if there exists a MIPS of T containing it.

5.2 Measures of Incoherence

5.2.1 Measures of incoherence for unsatisfiable concepts

If an ontology is incoherent, there is at least one unsatisfiable concept in its TBox. For these unsatisfiable
concepts, some are more problematic than others. For example, given a TBox T = {AvB,BvC,Bv¬C}.
A and B are both unsatisfiable concepts. However, A is unsatisfiable because of B. That is, if B becomes
satisfiable, then A is also satisfiable. So in a sense, we may regard B as more incoherent than A. However,
we develop an alternative (conflict-centric) characterization here.

We define an ordering between two unsatisfiable concepts based on the scoring function.

Definition 7 Let T be an incoherent TBox, and A be an unsatisfiable concept name in T and MUA(T ) be
the set of all MUPSs of T with respect to A. The scoring function for A is a function ST ,A : ℘(T ) 7→ N
(℘(T ) denotes the power set of T ) such that for all T ′∈℘(T )

ST ,A(T ′) = |{Ti∈MUA(T ) : Ti∩T ′ 6=∅}|.
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The scoring function ST ,A for A returns for each subset T ′ of T the number of MUPS of T with respect
to A that have overlap with T ′. The scoring function is originally defined in [Hun04] to compare two logical
inconsistent sets of propositional formulae. It is clear that we have the following proposition.

Proposition 1 Let T be an incoherent TBox, and A be an unsatisfiable concept names in T and MUA(T )
be the set of all MUPSs of T with respect to A. Suppose ST ,A is the scoring function for A, then for all
T ′∈℘(T )

ST ,A(T ′) = |MUA(T )| − |MUA(T \ T ′)|.

According to Proposition 1, the scoring function for T ′ gives the number of MUPS that would be eliminated
from T if T ′ were substracted from T .

Let T be an incoherent TBox, and A and B be two unsatisfiable concept names in T . Let MA =
∪Ti∈MUA(T )Ti and MB = ∪Tj∈MUB(T )Tj . Suppose |MA|<|MB|, then we add some dummy axioms to
MA such that |MA| = |MB|. We can define a score ordering as follows:

Definition 8 Assume that ST ,A and ST ,B are the scoring functions for A and B respectively. ST ,A≤SST ,B

iff there is a bijection f : ℘(MA) → ℘(MB) such that the following condition is satisfied:

∀T ′ ∈ ℘(MA), ST ,A(T ′)≤ST ,B(f(T ′)).

As usual, ST ,A<SST ,B denotes ST ,A≤SST ,B and ST ,B 6≤SST ,A, and ST ,A'SST ,B denotes ST ,A≤SST ,B

and ST ,B≤SST ,A. The score ordering, denoted ≤, is defined as: for any two unsatisfiable concepts A and
B,

A≤B iff ST ,A≤SST ,B.

Intuitively, ST ,A≤SST ,B means that the MUPSs in MUA(T ) are less overlapping than those in MUB(T ).
So A is less incoherent than B with respect to the score ordering iff the MUPSs in A is less overlapping than
those in B.

Example 1 Given a TBox T = {AvB,AvC,BvD, Cv¬D,EvF,Ev¬F, FvD,Ev¬D}, where
A,B,C, D,E, F are concept names. Clearly, A and E are two unsatisfiable concept names in T ,
and MUA = {T1}, where T1 = {AvB,AvC,BvD,Cv¬D} and MUE = {T2, T3}, where T2 =
{EvF,Ev¬F} and T3 = {EvF, FvD,Ev¬D}. So MA = {AvB,AvC,BvD,Cv¬D} and ME =
{EvF,Ev¬F, FvD,Ev¬D}. Let ST ,A and ST ,E be the scoring function for A and E respectively, then
ST ,A(T ′) = 1, for all T ′ ∈ ℘(MA). However, ST ,E({EvF}) = 2 and ST ,E(T ′)≥1 for all other T ′∈℘(ME).
So ST ,A<SST ,E and we have A<E.

When defining the score ordering, we need to find a bijection f mapping every subset of MA to a subset of
MB . In the following, we provide a procedure to find the bijection f . Let |℘(MA)| = |℘(MB)| = n.

Step 1: for each Ti∈℘(MA) and each T ′
j∈℘(MB), compute ST ,A(Ti) and ST ,B(T ′

j ),

Step 2: rearrange T1,...,Tn as Ti1 ,...,Tin (ik∈{1, ..., n}) such that ST ,A(Ti1)≥ST ,A(Ti2)
≥...≥ST ,A(Tin), and rearrange T ′

1 ,...,T ′
n as T ′

j1
,...,T ′

jn
(jk∈{1, ..., n}) such that ST ,B(T ′

j1
)≥ST ,B(T ′

j2
)

≥...≥ST ,B(T ′
jn

),

Step 3: a mapping fS : ℘(MA) → ℘(MB) is defined as follows: for each Tik∈℘(MA), fS(Tik) = T ′
jk

.

It is clear that fS is a bijection. We have the following proposition.
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Proposition 2 Assume that ST ,A and ST ,B are the scoring functions for A and B respectively. Then
ST ,A≤SST ,B iff

∀T ′ ∈ ℘(MA), ST ,A(T ′)≤ST ,B(fS(T ′)).

Proof sketch: “If" part is clear by the definition of score ordering. We show “only if" part.

Suppose ST ,A≤SST ,B , then there exists a bijection f such that for all T ′∈℘(MA), ST ,A(T ′)≤ST ,B(f(T ′)).
We shown that ST ,A(Tik)≤ST ,B(T ′

jk
) for all k = 1, ..., n by induction over the index k.

Suppose k = 1. Then ST ,A(Ti1)≤ST ,B(f(Ti1))≤ ST ,B(T ′
j1

).
Assume that ST ,A(Tik)≤ST ,B(T ′

jk
) for all k < m. Suppose that ST ,A(Tim)>ST ,B(T ′

jm
). Then ST ,B(T ′

jm
) <

ST ,B(f(Tim)). This means that there exists jl < jm such that f(Tim) = T ′
jl

. However, since
ST ,A(Tim)>ST ,B(T ′

jm
), we have that ST ,A(Tik)>ST ,B(T ′

jm
) for all k < m. Therefore, for any k < m,

there exists k′ < m such that f(Tik) = T ′
jk′

. Therefore, it is impossible that there exists jl < jm such
that f(Tim) = T ′

jl
(every such T ′

jl
has corresponds to a Tik with k < m). This is a contradiction. So

ST ,A(Tim)≤ST ,B(T ′
jm

).

We have the following proposition.

Proposition 3 Let T be an incoherent TBox, and let A and B be two unsatisfiable concept names in it. If
AvB∈T , then B≤SA.

Proof sketch: We add some dummy axioms to MB to make |M ′
B| = |MA|. We can define a bijec-

tion function f as follows: for each φ∈MB , f(φ) = φ; for each φ∈M ′
B\MB , we map it to an arbitrary

axiom in MA\MB and make sure that any two axioms are mapped to different axioms in MA\MB ; for
any subset T ′ of M ′

B , f(T ′) = {f(φ) : φ∈T ′}. It is easy to check that for each subset T ′ ∈ ℘(M ′
B),

ST ,B(T ′)≤ST ,A(f(T ′)).

Proposition 3 tells us that if A is subsumed by B then A is more incoherent than B with respect to the
score ordering. If we consider the example in the beginning of this section, B is less coherent than A
with respect to the score ordering. Therefore, our score ordering provides a different view on the extent of
incoherence of a concept from the subsumption relation. Indeed, scoring ordering gives a conflict-centric
view since the formulae involved in the conflict for concept B are a subset of those for concept A. Proposition
3 also provides us a way to improve the performance of our approach for generating the score ordering.
That is, before comparing the score functions of two unsatisfiable concept, we can first check if they have
subsumption relation in the ontology.

5.2.2 Measures of incoherence for terminologies

Given a TBox which may be incoherent, we propose some approaches to measuring its degree of incoher-
ence.

The first measure is defined by the ratio of number of unsatisfiable concepts and that of all the concepts in
T .

Definition 9 Let T be a TBox. Suppose Con(T ) is the set of all concept names and US(T ) be the set of
all unsatisfiable concept names in T respectively, the unsatisfiability ratio for T , denoted dUR, is defined as
follows:

dUR(T ) =
|US(T )|
|Con(T )|

.

The unsatisfiability ratio gives us a simple view on the incoherence of a TBox. That is, if most of the concept
names are unsatisfiable in a TBox, this TBox is problematic. However, the unsatisfiability ration is misleading
in some cases. For example, in an ontology such as Tamblis1 where there are large number of unsatisfiable

1http://protege.cim3.net/file/pub/ontologies/tambis/tambis-full.owl.
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concept name, many of the unsatisfiable concept names depend on other unsatisfiable concept names. The
root unsatisfiable concept names is few (in Tamblis, 33 concepts names out of 144 unsatisfiable concept
names are root unsatisfiable names) and by repairing these concept names we can get a coherent ontology.
Therefore, this ontology is not ”strongly" incoherent. To overcome the problem for the unsatisfiability ratio, we
can only consider the root unsatisfiable concept names.

We have the following definition.

Definition 10 Let T be a TBox. Suppose Con(T ) is the set of all concept names and RU(T ) be the set of
all root unsatisfiable concept names in T respectively, the refined unsatisfiability ratio for T , denoted dRU , is
defined as follows:

dRU (T ) =
|RU(T )|
|Con(T )|

.

Both the unsatisfiability ratio and the refined unsatisfiability ratio do not consider the amount of terminology
axioms which are in conflict. We define another incoherence measure for TBoxes.

Definition 11 Let T be a TBox. Suppose MI(T ) is the set of all MIPSs of T , then the incoherence ratio for
T , denoted dIR, is defined as follows:

dIR(T ) =
| ∪Ti∈MI(T ) Ti|

|T |
.

The incoherence ratio measures the percentage of axioms in a TBox which are in conflict. It differentiates
the root unsatisfiable concept names and derived unsatisfiable concept names. This is because any axiom
whose left hand is a derived unsatisfiable concept name is not in an MIPS.

Example 2 Let T = {AvB,Av¬B,CvA} and T ′ = {AvB,Av¬B,Cv⊥}. Then US(T ) = US(T ′) =
{A,C} and dUR(T ′) = dUR(T ′) = 2

3 : T and T ′ have the same unsatisfiability ratio. However, MI(T ) =
{{AvB,Av¬B}} and MI(T ′) = {T ′}. So dIR(T ) = 2

3 and dIR(T ′) = 1.

The problem for the incoherence ratio is that it says nothing about to which extent the MIPSs in MI(T )
overlap.

Example 3 Let T = {AvB,Av¬B,CvD,Cv¬D} and T ′ = {AvB,Av¬B,BvC,Av¬C} be two
coherent TBoxes, where A,B,C,D are concept names. By Definition 6, T has two MIPSs {AvB,Av¬B}
and {CvD,Cv¬D}, and T ′ has two MIPSs {AvB,Av¬B} and {AvB,BvC,Av¬C}. According to
Definition 11, we have dIR(T ) = dIR(T ′) = 1. However, MIPSs in MI(T ) have no overlap whilst the
MIPSs in MI(T ′) have a common axiom AvB. Therefore, we may conclude that T is less coherent than
T ′.

We have defined two measures and argue that they are not fine grained enough. Next, we define an inco-
herence measure for TBoxes which are based on the scoring functions.

Definition 12 Let T be a TBox. The scoring function for T , is a function ST : ℘(T ) 7→ N such that for all
T ′∈℘(T )

ST (T ′) = |{Ti∈MI(T ) : Ti∩T ′ 6=∅}|.

The scoring function ST for T returns for each subset T ′ of T the number of MIPS of T that have overlap
with T ′.

We have the following proposition for the scoring function.
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Proposition 4 Let ST be the scoring function for T . For Ti, Tj∈℘(T ), we have

ST (Ti ∩ Tj)≤min(ST (Ti), ST (Tj))

max(ST (Ti), ST (Tj))≤ST (Ti ∪ Tj).

The scoring function can be used to define an ordering between two terminology axioms.

Definition 13 Let T be a TBox and ST be its scoring function. A score-based ordering on terminology
axioms in T , denoted ≺ST , is defined as follows: for any φ, ψ∈T ,

φ�ST ψ iff ST ({φ})≤ST ({ψ}).

As usual, φ≺ST ψ denotes φ�ST ψ and ψ 6�ST φ. φ �ST ψ means that φ is less coherent than ψ with respect
to the scoring function. That is, φ is contained in less MIPSs of T than ψ. It is clear that �ST is a total
pre-order, i.e. a pre-order which is transitive.

Example 4 (Example 1 Continued) There are three MIPSs of T : T1 = {AvB,AvC,BvD,Cv¬D},
T2 = {EvF,Ev¬F} and T3 = {EvF, FvD,Ev¬D}. So ST ({EvF}) = 2 and ST ({φ}) = 1 for all
other φ ∈ T . Therefore, EvF≺ST φ for all φ ∈ T and φ is not EvF .

Let T and T ′ be two TBox. Let MT = ∪Ti∈MI(T )Ti and MT ′ = ∪Tj∈MI(T )′Tj . Suppose |MT |<|MT ′ |,
then we add some dummy axioms to MT such that |MT | = |MT ′ |. An ordering on TBoxes can be defined
by the scoring functions as follows.

Definition 14 Assume that ST and ST ′ are the scoring functions for two TBoxes T and T ′ respectively.
ST �ST ′ iff there is a bijection f : ℘(MT ) → ℘(MT ′) such that the following condition is satisfied:

∀T ′ ∈ ℘(M1), ST (T ′)≤ST ′(f(T ′)).

As usual, ST precSST ′ denotes ST �SST ′ and ST ′ 6�SST , and ST ≡SST ′ denotes ST �SST ′ and ST ′�SST .
The score ordering, denoted �S , is defined as: for any two TBoxes T and T ′,

T �ST ′ iff ST �SST ′ .

Intuitively, ST �ST ′ means that the MIPSs of T are less overlapping than those of T ′. So T is less coherent
than T ′ with respect to the score ordering iff the MIPSs of T is less overlapping than those of T ′.

Example 5 Given two TBoxes T = {AvBuC,BuCv⊥} and T ′ = {AvB,AvC,BuCv⊥}, it is
clear that T ≡ T ′. T has only one MIPS which is T and T ′ has only one MIPS which is T ′. So
MT = T and MT ′ = T ′. Since |MT | < |MT ′ |, we add a dummy axiom to MT such that MT =
{AvBuC,BuCv⊥, Dv>}, where D is a new concept name. Let ST and ST ′ be the scoring functions for
T and T ′ respectively, we then have

ST ({AvBuC}) = 1, ST ({BuCv⊥}) = 1,

ST ({Dv>}) = 0, and

ST ′({AvB}) = 1, ST ′({AvC}) = 1,

ST ′({BuCv⊥}) = 1.

So ST ≺ST ′ and T ≺ST ′.

According to Example 5, the scoring function defined by Definition 12 is syntax sensitive in the sense that
there may exist two TBoxes T and T ′ where T ≡ T ′ and ST is the scoring function for T and ST ′ is the
scoring function for T ′, but ST 6≡ST ′ . To give a more precise measure of incoherence, we can simply split the
axioms in a TBox T into “smaller" axioms to obtain an equivalent TBox Ts using the algorithm in [KPSG06].

The score ordering �S is related to the incoherence ratio.
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Proposition 5 Let T and T ′ be two TBoxes, and |T | = |T ′|. Suppose ST and ST ′ are scoring function for
T and T ′ respectively, then

ST �SST ′ implies dIR(T )≤dIR(T ′).
The converse does not hold.

Proposition 5 tells us that a score ordering takes into account the incoherence ratio. That is, if two TBoxes
have the same cardinality, then a TBox T is less coherent than another one T ′ implies that T contains fewer
conflicting terminology axioms.

5.3 Summary

In this chapter we have presented measures of incoherence in an incoherent ontology. These measures can
provide important context information for dealing with imperfect information in an ontology. The approaches
provided in the chapter have been used to illustrate how to obtain some kind of provenance context automat-
ically.



D3.1.2 Context Representation Formalism Page 31 of 34

Chapter 6

Conclusion

6.1 Summary

In this deliverable we have discussed formalisms for context representation in the NeOn project. First, we
have recalled the general definition of context given in the NeOn deliverable D3.1.1. We have then instan-
tiated the general definition by describing provenance and argumentation. This context information can be
applied to deal with inconsistency and incoherence in ontologies. After that, we proposed a number of differ-
ent possible groundings of the metamodel in the OWL DL language. Finally, we have given some approaches
to measuring incoherence in an OWL ontology. Two kinds of measures were considered: measures of in-
coherence for unsatisfiable concepts and measures of incoherence for terminologies. These measures can
be used to obtain ranking information automatically from an incoherent ontology and so provide important
context information for maintaining and evaluating ontologies.

6.2 Roadmap

While in this deliverable we have laid the foundations for the representation of context, the next steps are
the realization of solutions for obtaining, reasoning with and exploiting context. With respect to obtaining
context, we will extend existing tools for the construction of ontologies with capabilities to generate context
information along with the ontologies. Specific tools include: ontology learning tools (as part of task T3.8
Context for learning networked ontologies) and the argumentation support tools developed (as part of WP2,
task T2.3 Methods for collaborative construction, annotation, and argumentation of ontologies).

Further, we develop approaches for reasoning with context. In the deliverable D3.2.3 Context reasoning with
imperfect information we will provide specific methods for dealing with uncertain and inconsistent information
in automatically generated or collaboratively engineered ontologies.

Other aspects of exploiting context information will include visualizing contexts as part of task T3.7 context-
sensitive visualization of networked ontologies in collaboration with WP4.

2006–2007 c© Copyright lies with the respective authors and their institutions.



Page 32 of 34 NeOn Integrated Project EU-IST-027595

Bibliography

[AM97] P. Smets A. Motro. Uncertainty Management In Information Systems. Springer, 1997.

[BCRS06] P. Buitelaar, P. Cimiano, S. Racioppa, and M. Siegel. Ontology-based information extraction with
soba. In Proceedings of the International Conference on Language Resources and Evaluation
(LREC), 2006.

[BDP92] Salem Benferhat, Didier Dubois, and Henri Prade. Representing default rules in possibilistic
logic. In KR, pages 673–684, 1992.

[BLP04] S. Benferhat, S. Lagrue, and O. Papini. Reasoning with partially ordered information in a possi-
bilistic logic framework. Fuzzy Sets and Systems, 144(1):25–41, 2004.

[BOS03] P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A protégé plug-in for ontology extraction from
text. In Proceedings of the International Semantic Web Conference (ISWC), 2003.

[CGL+06] Carola Catenacci, Aldo Gangemi, Jos Lehmann, Malvina Nissim, and Valentina Presutti. De-
sign rationales for collaborative development of networked ontologies - state of the art and the
collaborative ontology design ontology. Technical report, CNR; NeOn Deliverable D2.1.1, 2006.

[Cir01] F. Ciravegna. Adaptive information extraction from text by rule induction and generalization. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI), pages
1251–1256, 2001.
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